If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10=342
We move all terms to the left:
4x^2-10-(342)=0
We add all the numbers together, and all the variables
4x^2-352=0
a = 4; b = 0; c = -352;
Δ = b2-4ac
Δ = 02-4·4·(-352)
Δ = 5632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5632}=\sqrt{256*22}=\sqrt{256}*\sqrt{22}=16\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{22}}{2*4}=\frac{0-16\sqrt{22}}{8} =-\frac{16\sqrt{22}}{8} =-2\sqrt{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{22}}{2*4}=\frac{0+16\sqrt{22}}{8} =\frac{16\sqrt{22}}{8} =2\sqrt{22} $
| 2u-5=6u-53 | | 12h-12h+2h-2h+h=4 | | 2a+12=8a-84 | | 2a+12=8a–84 | | 19u-u-17u+-18u-10=-9 | | 5c-73=2c+44 | | 61/3x6=12 | | -(-7x-6)-2x=21 | | 8y=(-90)=-46 | | 3+m=16 | | 3(3x-6)=44 | | -5-9(7x+1)=-14 | | 12u-13u+11u+10=20 | | x^2-3x+7=11 | | 4 y= 40 | | 5(2-y)=-6 | | -55=4(2x-5)-3x | | n94= 1 | | 1 = d110 | | 7h-5h+2h-3=5 | | 3 = 3 v | | 3v-8v+-v=-12 | | 19x+x-16x+2x-5x=19 | | –9(g−92)=–54 | | z-10=3z-82 | | 5.5x-22=-14.5+4x | | t=6t-70 | | 2p-p-p+2p=2 | | 7.8x+4=-8+5.4x | | 15-10x=10(x+1.5) | | 8.9–=1.4x+(–6.5x)+3.4 | | 8a-5a-a+2a=16 |